Buch
Transparent Data Mining for Big and Small Data
Tania Cerquitelli; Daniele Quercia; Frank Pasquale (Hrsg.)
149,79
EUR
Lieferzeit 12-13 Tage
Übersicht
Verlag | : | Springer International Publishing |
Buchreihe | : | Studies in Big Data (Bd. 32) |
Sprache | : | Englisch |
Erschienen | : | 28. 07. 2018 |
Seiten | : | 215 |
Einband | : | Kartoniert |
Höhe | : | 235 mm |
Breite | : | 155 mm |
Gewicht | : | 367 g |
ISBN | : | 9783319852997 |
Sprache | : | Englisch |
Inhaltsverzeichnis
Part I: Transparent Mining.- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good.- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens.- Chapter 3: The Princeton Web Transparency and Accountability Project.- Part II: Algorithmic solutions.- Chapter 4: Algorithmic Transparency via Quantitative Input Influence.- Chapter 5.- Learning Interpretable Classification Rules with Boolean Compressed Sensing.- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey.- Part III: Regulatory solutions.- Chapter 7: Beyond the EULA: Improving Consent for Data Mining.- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms.- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring AlgorithmicAccountability?