Buch


Energieeffiziente Hardwareimplementierung von Methoden des maschinellen Lernens zur Detektion epileptischer Anfälle

Energieeffiziente Hardwareimplementierung von Methoden des maschinellen Lernens zur Detektion epileptischer Anfälle

Simon Heller

 

84,00 EUR
Nicht lieferbar



84,00 EUR
Nicht lieferbar



Produktinformation


Übersicht


Verlag : Dr. Hut
Buchreihe : Mikrosystemtechnik
Sprache : Deutsch
Erschienen : 08. 06. 2022
Seiten : 200
Einband : Kartoniert
Höhe : 240 mm
Breite : 170 mm
Gewicht : 381 g
ISBN : 9783843950565

Du und »Energieeffiziente Hardwareimplementierung von Methoden des maschinellen Lernens zur Detektion epileptischer Anfälle«




Produktinformation


Aufgrund ihrer Pharmakoresistenz gibt es derzeit für etwa 30 % der Epilepsiepatienten keine Behandlungsmöglichkeit, die eine Anfallsfreiheit ermöglicht. Eine neue, symptomatische Therapie könnte die Neurostimulation darstellen, die bereits erfolgreich zur Behandlung von Parkinson eingesetzt wird. Für ihre Anwendung in einem responsiven Stimulator ist eine kontinuierliche Überwachung und Klassifikation der neuronalen Aktivität erforderlich, um die Ausbreitung eines beginnenden Anfalls möglichst frühzeitig durch eine Stimulation zu unterbrechen. In jüngerer Zeit erweisen sich dafür vor allem Methoden aus dem Bereich des maschinellen Lernens als vielversprechend, da sie trotz der Komplexität und Variation der neuronalen Aktivität und der epilepsietypischen Potenziale eine zuverlässige Detektion ermöglichen.

Im Rahmen der vorliegenden Arbeit wird untersucht, ob und wie Methoden des maschinellen Lernens energieeffizient auf der Hardwareplattform eines Neurostimulators implementiert werden können, um zum einen epileptische Anfälle sicher zu erkennen und zum anderen einen mehrjährigen Betrieb sicher zu stellen. Aufgrund der Skalierbarkeit ihrer Modellgröße und der vergleichsweise einfachen Klassifikationsalgorithmen stellen Entscheidungswälder und Konvolutionsnetze aussichtsreiche Methoden für eine Hardwareimplementierung dar.

Mit einer Detektionsrate von 100 % und einer Detektionsverzögerung von 4 s zeigen beide Methoden beste Voraussetzungen, Anfälle zuverlässig und früh genug zu erkennen, um eine erfolgreiche Intervention zu gewährleisten. Durch seine im Vergleich zum Konvolutionsnetz geringere Falschdetektionsrate (4,6 vs. 34 Falschdetektionen pro Stunde) und geringere Leistungsaufnahme (56 μW vs. 868 μW), ist der Entscheidungswald der für den Einsatz in einem Implantat zu bevorzugende Klassifikator.

Deine Buchhandlung


Buchhandlung LeseLust
Inh. Gernod Siering

Georgenstraße 2
99817 Eisenach

03691/733822
kontakt@leselust-eisenach.de

Montag-Freitag 9-17 Uhr
Sonnabend 10-14 Uhr



Deine Buchhandlung
Buchhandlung LeseLust
Inh. Gernod Siering

Georgenstraße 2
99817 Eisenach

03691/733822
kontakt@leselust-eisenach.de

Montag-Freitag 9-17 Uhr
Sonnabend 10-14 Uhr