Buch
Orthogonal Polynomials
-2nd AIMS-Volkswagen Stiftung Workshop, Douala, Cameroon, 5-12 October, 2018-Mama Foupouagnigni; Wolfram Koepf (Hrsg.)
160,49
EUR
Lieferzeit 12-13 Tage
Übersicht
Verlag | : | Springer International Publishing |
Buchreihe | : | Tutorials, Schools, and Workshops in the Mathematical Sciences |
Sprache | : | Englisch |
Erschienen | : | 12. 03. 2020 |
Seiten | : | 594 |
Einband | : | Gebunden |
Höhe | : | 235 mm |
Breite | : | 155 mm |
ISBN | : | 9783030367435 |
Sprache | : | Englisch |
Inhaltsverzeichnis
Part I: Introduction to Orthogonal Polynomials.- An Introduction to Orthogonal Polynomials.- Classical Continuous Orthogonal Polynomials.- Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal Polynomials.- Properties and Applications of the Zeros of Classical Continuous Orthogonal Polynomials.- Inversion, Multiplication and Connection Formulae of Classical Continuous Orthogonal Polynomials.- Classical Orthogonal Polynomials of a Discrete and a q-Discrete Variable.- Computer Algebra, Power Series and Summation.- On the Solutions of Holonomic Third-Order Linear Irreducible Differential Equations in Terms of Hypergeometric Functions.- The Gamma Function.- Part II: Recent Research Topics in Orthogonal Polynomials and Applications.- Hypergeometric Multivariate Orthogonal Polynomials.- Signal Processing, Orthogonal Polynomials, and Heun Equations.- Some Characterization Problems Related to Sheffer Polynomial Sets.- From Standard Orthogonal Polynomials to Sobolev Orthogonal Polynomials: The Role of Semiclassical Linear Functionals.- Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization.- Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations.- (R, p, q)-Rogers–Szegö and Hermite Polynomials, and Induced Deformed Quantum Algebras.- Zeros of Orthogonal Polynomials.- Properties of Certain Classes of Semiclassical Orthogonal Polynomials.- Orthogonal Polynomials and Computer Algebra.- Spin Chains, Graphs and State Revival.- An Introduction to Special Functions with Some Applications to Quantum Mechanics.- Orthogonal and Multiple Orthogonal Polynomials, Random Matrices, and Painlevé Equations.