Buch
Portrait of Young Gödel
-Education, First Steps in Logic, the Problem of Completeness-Jan von Plato
139,09
EUR
Lieferzeit 12-13 Tage
Übersicht
Verlag | : | Springer International Publishing |
Buchreihe | : | Vienna Circle Institute Library |
Sprache | : | Englisch |
Erschienen | : | 07. 02. 2024 |
Seiten | : | 307 |
Einband | : | Gebunden |
Höhe | : | 235 mm |
Breite | : | 155 mm |
Gewicht | : | 647 g |
ISBN | : | 9783031519703 |
Sprache | : | Englisch |
Illustrationen | : | IX, 307 p. |
Autorinformation
Jan von Plato is professor of philosophy at the University of Helsinki. He has written several books on proof theory and the development of logic, including Elements of Logical Reasoning and The Great Formal Machinery Works. His series of books on Gödel began in 2020 with Can Mathematics Be Proved Consistent? Portrait of Young Gödel is the fifth book in this series. 
Inhaltsverzeichnis
PART I: AT HIGH SCHOOL AND UNIVERSITY.- 1. At high school.- 1.1. High school extraordinary.- 1.2. The activity of the human mind.- 1.3. Molecular theory.- 1.4. G¨odel’s esoteric side.-  At university: from physics to mathematics.- 2.1. The physics student.- 2.2. Mathematics and philosophy.- PART II: FIRST STEPS IN LOGIC.- 1. First encounters with foundational problems.- 2. The Weber-Heft.- 3. The U¨ bungsheft Logik.- 3.1. Exercise in constitutional analysis.- 3.2. Formal derivations in second-order arithmetic and set theory.- 3.3. Beautiful syntax trees and other diversions.- 3.4. Summary overview of the U¨ bungsheft.- 4. Punktmengenlehre.- 4.1. Hilbert’s geometry.- 4.2. Hausdorff’s point set topology.- PART III: THE PROBLEM OF COMPLETENESS.- 1. From Carnap’s exercises to the problem of completeness.- 2. Dissertation draft.- 2.1. Generality.- 2.2. First-order logic.- 2.3. The proof of completeness.- 3. Completeness of the axioms of the narrower function calculus.- 4. Lectures and seminars on completeness..- 5. Anticipations of incompleteness.- PART IV: THE SHORTHAND NOTEBOOKS.- 1. The Weber-Heft.- 2. U¨ bungsheft Logik: formal derivations.- 3. Punktmengenlehre: Hilbert’s geometry.- 4. Punktmengenlehre and U¨ bungsheft: set theory and topology.- 6. Completeness of the axioms of the narrower function calculus.- PART V: LECTURES AND SEMINARS ON COMPLETENESS.- 1. On the completeness of the axioms of the logical function calculus.- 2. Lecture in K¨onigsberg.- 3. Lecture in Vienna (plan of contents).- 4. Report on G¨odel’s work.- 5. Completeness of the function calculus.