Buch


Data Science and Predictive Analytics

Data Science and Predictive Analytics

-Biomedical and Health Applications using R-

Ivo D. Dinov

 

117,69 EUR
Lieferzeit 12-13 Tage



117,69 EUR
Lieferzeit 12-13 Tage



Autorinformation
Inhaltsverzeichnis
Pressestimmen


Übersicht


Verlag : Springer International Publishing
Buchreihe : The Springer Series in Applied Machine Learning
Sprache : Englisch
Erschienen : 27. 01. 2023
Seiten : 840
Einband : Gebunden
Höhe : 235 mm
Breite : 155 mm
ISBN : 9783031174827
Sprache : Englisch
Illustrationen : X, 840 p.

Du und »Data Science and Predictive Analytics«




Autorinformation


Professor Ivo D. Dinov directs the Statistics Online Computational Resource (SOCR) at the University of Michigan and serves as associate director of the Michigan Institute for Data Science (MIDAS). He is an expert in mathematical modeling, statistical analysis, high-throughput computational processing, and scientific visualization of large, complex and heterogeneous datasets (Big Data). Dr. Dinov is developing, validating, and disseminating novel technology-enhanced pedagogical approaches for STEM education and active data science learning. His artificial intelligence and machine learning work involves compressive big data analytics, statistical obfuscation of sensitive data, complex time (kime) representation, model-based and model-free techniques for kimesurface analytics. Dr. Dinov is a member of the American Statistical Association, the American Mathematical Society, the American Physical Society, the American Association for the Advancement of Science, an honorary member ofthe Sigma Theta Tau International Society, and an elected member of the International Statistical Institute.

Inhaltsverzeichnis


Chapter 1 - Introduction.- Chapter 2: Basic Visualization and Exploratory Data Analytics.- Chapter 3: Linear Algebra, Matrix Computing and Regression Modeling.- Chapter 4: Linear and Nonlinear Dimensionality Reduction.- Chapter 5: Supervised Classification.- Chapter 6: Black Box Machine Learning Methods.- Chapter 7: Qualitative Learning Methods - Text Mining, Natural Language Processing, Apriori Association Rules Learning.- Chapter 8: Unsupervised Clustering.- Chapter 9: Model Performance Assessment, Validation, and Improvement.- Chapter 10: Specialized Machine Learning Topics.- Chapter 11: Variable Importance and Feature Selection.- Chapter 12: Big Longitudinal Data Analysis.- Chapter 13: Function Optimization.- Chapter 14: Deep Learning, Neural Networks.

Pressestimmen


“The book under review is composed as a thorough textbook-like collection of theoretical details and examples spanning fourteen chapters of mathematical background and classic and modern data science and machine learning approaches. Each chapter is significantly enhanced with practice problems and case studies which underline both corner cases and particularities of the presented methods.” (Irina Ioana Mohorianu, zbMATH 1542.68001, 2024)

Deine Buchhandlung


Buchhandlung LeseLust
Inh. Gernod Siering

Georgenstraße 2
99817 Eisenach

03691/733822
kontakt@leselust-eisenach.de

Montag-Freitag 9-17 Uhr
Sonnabend 10-14 Uhr



Deine Buchhandlung
Buchhandlung LeseLust
Inh. Gernod Siering

Georgenstraße 2
99817 Eisenach

03691/733822
kontakt@leselust-eisenach.de

Montag-Freitag 9-17 Uhr
Sonnabend 10-14 Uhr