Buch
Nonlinear state and parameter estimation of spatially distributed systems
Felix Sawo
Übersicht
Verlag | : | KIT Scientific Publishing |
Buchreihe | : | Karlsruhe series on intelligent sensor-actuator-systems (Bd. 5) |
Sprache | : | Englisch |
Erschienen | : | 26. 05. 2009 |
Seiten | : | 153 |
Einband | : | Kartoniert |
Höhe | : | 210 mm |
Breite | : | 148 mm |
Gewicht | : | 300 g |
ISBN | : | 9783866443709 |
Sprache | : | Englisch |
Illustrationen | : | Ill., graph. Darst. |
Produktinformation
In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.